

Abstracts

Microwave Measurement of Temperature and Current Dependence of Surface Impedance for High-T_{sub} c/ Superconductors

Y. Kobayashi, T. Imai and H. Kayano. "Microwave Measurement of Temperature and Current Dependence of Surface Impedance for High-T_{sub} c/ Superconductors." 1991 Transactions on Microwave Theory and Techniques 39.9 (Sep. 1991 [T-MTT] (Special Issue on Microwave Applications of Superconductivity)): 1530-1538.

Perturbation formulas for TE_{sub} 011/ mode dielectric rod resonator and for a TE_{sub} 011/ mode circular cavity resonator are derived to determine the surface impedance $Z_{sub s}/$ ($= R_{sub s}/ + jX_{sub s}/$) of superconductors from measured values of resonant frequencies and unloaded Q. Also, the relation between the maximum surface current density of a superconductor, $J_{sub s}/$ (A/m), and output power from a signal generator $P_{sub O}/$ (W), is derived. On the basis of these analytical results, a measurement technique is proposed to evaluate the temperature and $J_{sub s}/$ dependences of $Z_{sub s}/$ for superconductors. The measured results of the temperature dependence of $Z_{sub s}/$ for YBCO and copper plates, which are obtained from the $f_{sub 0}/$ and $Q_{sub u}/$ values measured for the dielectric resonator and for the cavity resonator, are presented. From these results, it is verified that the dielectric resonator is suitable for measuring $X_{sub s}/$ for YBCO. Furthermore, from these $Z_{sub s}/$ values the temperature dependence of the skin depth delta and the penetration depth lambda, and those of the complex conductivity $\sigma_{sub r} - j\sigma_{sub i}/$ are obtained on the basis of the two-fluid model. These measured values agree well with the theoretical curves calculated by introducing the concept of the residual normal state conductivity $\sigma_{sub res}/$ into $\sigma_{sub r}/$. From the $J_{sub s}/$ dependence of $Z_{sub s}/$ measured for the YBCO and copper plates, it is shown that the $R_{sub s}/$ of copper does not depend on $J_{sub s}/$, that the value for YBCO has a strong $J_{sub s}/$ dependence, and that $X_{sub s}/$ of YBCO has little dependence on $J_{sub s}/$. It is verified that a dielectric resonator is preferred for measuring the $J_{sub s}/$ dependence of $Z_{sub s}/$, because of energy concentration, compared with a cavity resonator.

[Return to main document.](#)

Click on title for a complete paper.